环境胁迫对广西道地药材次生代谢产物积累的影响Influence of Environmental Stress on the Accumulation of Secondary Metabolites from Dao-di Medicinal Materials in Guangxi
彭凤,刘颖颖,余海霞,黄媛,闫志刚,白隆华
摘要(Abstract):
广西地处我国西南部,为山地丘陵性盆地地貌,属亚热带季风气候区,孕育了丰富的中药材资源,形成了一批独具特色的道地中药材。但广西中药材的道地性研究鲜有报道,限制了药材次生代谢物质含量以及药用品质的进一步提升。文章总结近年来生态因子影响药用植物次生代谢物质积累相关研究成果,讨论水分、光照、温度、营养状况、土壤等胁迫条件下中药材次生代谢物质积累的变化,挖掘有助于药材道地性诠释的科学数据,探寻生态因子对广西中药材道地性形成的作用。
关键词(KeyWords): 广西道地药材;药用植物;环境胁迫;次生代谢产物;积累
基金项目(Foundation): 广西科技重大专项项目(No.桂科AA22096021);; 广西特色药材关键技术研究推广项目(No.GZKJ2314);; 广西中药材品质创新研究团队项目(No.GZKJ2305)
作者(Author): 彭凤,刘颖颖,余海霞,黄媛,闫志刚,白隆华
参考文献(References):
- [1]肖小河,陈士林,黄璐琦,等.中国道地药材研究20年概论[J].中国中药杂志, 2009, 34(5):519-523.
- [2]钱长江.黔产杜仲道地性特征及其形成机制与林分布局研究[D].贵阳:贵州大学, 2022.
- [3]李振凯.宁夏银柴胡道地性形成相关因子研究[D].银川:宁夏大学, 2023.
- [4]袁媛,郑汉,黄璐琦.再论道地药材“优形、优质、优效”特征成因及研究模式[J].中国中药杂志, 2024, 49(15):3 977-3 985.
- [5]郭兰萍,周良云,康传志,等.药用植物适应环境胁迫的策略及道地药材“拟境栽培”[J].中国中药杂志, 2020,45(9):1 969-1 974.
- [6]袁媛,黄璐琦.道地药材分子生药学研究进展和发展趋势[J].科学通报, 2020, 65(12):1 093-1 102.
- [7] Hasanuzzaman M, Mahmud J A, Anee T, et al. Drought stress tolerance in wheat:omics approaches in understanding and enhancing antioxidant defense[M]. New York, USA:Springer, 2018.
- [8] Tewari S, Mishra A. Flooding stress in plants and approaches to overcome[M]. Amsterdam, The Netherlands:Elsevier, 2018.
- [9] Shahrajabian M H, Kuang Y, Cui H R, et al. Metabolic changes of active components of important medicinal plants on the basisof traditional Chinese medicine under different environmental stresses[J]. Current Organic Chemistry, 2023,27(9):782-806.
- [10]李鑫,敖志超,周洁,等.粉葛生理特性对干旱胁迫的响应[J].分子植物育种, 2023, 21(15):5 110-5 121.
- [11] Emami Bistgani Z, Sefidkon F. Review on ethnobotany,phytochemical, molecular and pharmacological activity of Thymus daenensis Celak[J]. Biocatalysis and Agricultural Biotechnology, 2019, 22:101 400.
- [12] Emami Bistgani Z, Barker A V, Hashemi M. Physiology of medicinal and aromatic plants under drought stress[J]. The Crop Journal, 2024, 12(2):330-339.
- [13]张智仙,王晓红,李雪,等.土壤自然干旱处理对钩藤生长与生理特征及主要药用成分积累的影响[J].西北植物学报, 2020, 40(4):658-666.
- [14] Singh R, Gupta P, Khan F, et al. Modulations in primary and secondary metabolic pathways and adjustment in physiological behaviour of Withania somnifera under drought stress[J]. Plant Science, 2018, 272:42-54.
- [15] Liang Y, Wei F, Qin S, et al. Sophora tonkinensis:Response and adaptation of physiological characteristics, functional traits, and secondary metabolites to drought stress[J]. Plant Biology, 2023, 25(7):1 109-1 120.
- [16] Chang B, Ma K B, Lu Z G, et al. Physiological, transcriptomic, and metabolic responses of Ginkgo biloba L. to drought, salt, and heat stresses[J]. Biomolecules, 2020,10(12):1 635.
- [17]冯凯,陈颖,刘瑞,等.银杏类黄酮代谢研究进展[J].西南林业大学学报(自然科学), 2022, 42(1):178-188.
- [18] Guo J, Wang Y Q, Li J Q, et al. Overview and recent progress on the biosynthesis and regulation of flavonoids in Ginkgo biloba L[J]. International Journal of Molecular Sciences, 2023, 24(19):14 604.
- [19]王得运.水分胁迫下栀子的生理响应与转录组分析[D].南昌:江西中医药大学, 2020.
- [20] Feng Z, Wang D Y, Zhou Q G, et al. Physiological and transcriptomic analyses of leaves from Gardenia jasminoides Ellis under waterlogging stress[J]. Revista Brasleira de Biologia, 2022, 84:e263092.
- [21] Nawae W, Yoocha T, Narong N, et al. Transcriptome sequencing revealed the influence of blue light on the expression levels of light-stress response genes in Centella asiatica[J]. PLoS One, 2021, 16(11):e0260468.
- [22] Zhang D, Sun W, Shi Y H, et al. Red and blue light promote the accumulation of artemisinin in Artemisia annua L[J].Molecules, 2018, 23(6):1 329.
- [23]黄燕芬,林宣伶,万凌云,等. LED光质对积雪草生长及总苷含量的影响[J].照明工程学报, 2023, 34(5):19-23.
- [24] Li Y P, Qin W, Fu X Q, et al. Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L[J]. Plant Physiology and Biochemistry, 2021, 163:189-200.
- [25]莫运才,曾令杰,黄涵,等. UV-B辐射对铁皮石斛叶片光合色素、类黄酮及PAL酶活性的影响[J].贵州农业科学,2015, 43(7):34-37.
- [26]郭玉梅,曾令杰,梁淑颖,等. UV-B辐射对铁皮石斛生长及主要次生代谢产物的影响[J].北方园艺, 2016(17):154-156.
- [27] Zhang Q Z, Wu N Y, Jian D Q, et al. Overexpression of Aa PIF3 promotes artemisinin production in Artemisia annua[J]. Industrial Crops and Products, 2019, 138:111 476.
- [28] Lopes E M, Guimar?es-Dias F, Gama T D S S, et al. Artemisia annua L. and photoresponse:From artemisinin accumulation, volatile profile and anatomical modifications to gene expression[J]. Plant Cell Reports, 2020, 39(1):101-117.
- [29] Yang Y J, Yang X L, Jang Z, et al. UV RESISTANCE LOCUS 8 from Chrysanthemum morifolium Ramat(Cm UVR8)plays important roles in UV-B signal transduction and UV-B-induced accumulation of flavonoids[J]. Frontiers in Plant Science, 2018, 9:955.
- [30] Hao X L, Zhong Y J, Tzmann H N, et al. Light-induced artemisinin biosynthesis is regulated by the b ZIP transcription factor Aa HY5 in Artemisia annua[J]. Plant&Cell Physiology, 2019, 60(8):1 747-1 760.
- [31] Fu X Q, Peng B W, Hassani D, et al. AaWRKY9 contributes to light-and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua[J]. New Phytologist, 2021,231(5):1 858-1 874.
- [32] Pandey N, Goswami N, Tripathi D, et al. Epigenetic control of UV-B-induced flavonoid accumulation in Artemisia annua L[J]. Planta, 2019, 249(2):497-514.
- [33]周定定.光照对穿心莲内酯合成的调控机制研究[D].南昌:南昌大学, 2023.
- [34] Wang J J, Ji L L, Deng X H, et al. Effects of light intensity on growth and content of active components of Uncaria rhynchophyll[J]. Zhongguo Zhongyao Zazhi, 2019, 44(23):5 118-5 123.
- [35] Zhang J Y, Xu X Z, Kuang S B, et al. Constitutive activation of genes involved in triterpene saponins enhances the accumulation of saponins in three-year-old Panax notoginseng growing under moderate light intensity[J]. Industrial Crops and Products, 2021, 171:113 938.
- [36] Sowmya R, Ciji P K, Narasimhan S. Tailor-made LED Illumination inducing Metabolic Variations in Centella asiatica,an important medicinal herb[J]. Research Journal of Biotechnology, 2021, 16(8):55-60.
- [37] Harakotr B, Charoensup L, Rithichai P, et al. Growth, triterpene glycosides, and antioxidant activities of Centella asiatica L. urban grown in a controlled environment with different nutrient solution formulations and LED light intensities[J]. Horticulturae, 2024, 10(1):71.
- [38] Sytar O, Zivcak M, Bruckova K, et al. Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature[J]. Scientia Horticulturae, 2018, 239:193-204.
- [39]张伟,孟祥庆,苏晓荟,等.光调控对药用植物次生代谢成分合成的影响[J].药学实践与服务, 2024, 42(2):50-59.
- [40]杨泽敏,高旦,王业,等.多组学技术揭示药用植物逆境响应及次生代谢调控机制的研究进展[J].中药材, 2024,47(4):1 062-1 070.
- [41]谭雪艳.高温胁迫对金钗石斛生理和次生代谢的影响及外源钙缓解效应[D].雅安:四川农业大学, 2022.
- [42] Zhang X, Ren A, Li M J, et al. Heat stress modulates Mycelium growth, heat shock protein expression, ganoderic acid biosynthesis, and hyphal branching of Ganoderma lucidum via cytosolic Ca2[J]. Applied and Environmental Microbiology, 2016, 82(14):4 112-4 125.
- [43]杨淑君.模拟温度升高和降水改变对钩藤生理生态特性的影响[D].贵阳:贵州大学, 2020.
- [44]鹿江南,张栋,丁丹丹,等.高温促进黄花蒿中青蒿素生物合成的机制研究[J].中国中药杂志, 2018, 43(20):4 169-4 176.
- [45] Guo J, Zhou X, Wang T L, et al. Regulation of flavonoid metabolism in Ginkgo leaves in response to different day-night temperature combinations[J]. Plant Physiology and Biochemistry, 2020, 147:133-140.
- [46]周润泽.不同温度对三七皂苷含量的影响研究[D].昆明:云南中医药大学, 2020.
- [47] Yu X F, Zhu Y L, Fan J Y, et al. Accumulation of flavonoid glycosides and UFGT gene expression in mulberry leaves(Morus alba L.)before and after frost[J]. Chemistry&Biodiversity, 2017, 14(8). DOI:10.1002/cbdv.201600496.
- [48]谢贤胜,康吉利,冯鑫鑫,等.近30年广西土壤有机质演变特征[J].农业资源与环境学报, 2022, 39(5):1 014-1 024.
- [49]李金梅,黄梅,康吉利,等. 1984—2019年广西土壤p H演变特征[J].生态学杂志, 2024, 43(11):3 317-3 323.
- [50]韦洋,康吉利,冯鑫鑫,等. 1984—2019年广西表层土壤有效磷含量的演变特征[J].西南农业学报, 2024, 37(1):172-181.
- [51]钟楚,简少芬.氮素营养调控植物逆境适应的机理研究[J].华北农学报, 2020, 35(S1):424-432.
- [52] Medina-Pérez V, López-Laredo A R, Sepúlveda-Jiménez G,et al. Nitrogen deficiency stimulates biosynthesis of bioactive phenylethanoid glycosides in the medicinal plant Castilleja tenuiflora Benth[J]. Acta Physiologiae Plantarum,2015, 37(5):93.
- [53] Saloner A, Bernstein N. Nitrogen supply affects cannabinoid and terpenoid profile in medical Cannabis(Cannabis sativa L.)[J]. Industrial Crops and Products, 2021, 167:113 516.
- [54]简少芬,钟楚,万斯,等.穿心莲不同生长发育期穿心莲内酯积累与碳氮代谢特征[J/OL].西南农业学报, 2024:1-13.(2024-03-29). https://kns.cnki.net/kcms/detail/51.1213.S.20240328.1724.006.html.
- [55] Cun Z, Wu H M, Zhang J Y, et al. High nitrogen inhibits biomass and saponins accumulation in a medicinal plant Panax notoginseng[J]. PeerJ, 2023, 11:e14933.
- [56] Zhang J Y, Cun Z, Wu H M, et al. Integrated analysis on biochemical profiling and transcriptome revealed nitrogen-driven difference in accumulation of saponins in a medicinal plant Panax notoginseng[J]. Plant Physiology and Biochemistry, 2020, 154:564-580.
- [57]李泽东.不同磷水平处理对三七砷吸收的影响及调控机制研究[D].昆明:云南中医药大学, 2019.
- [58]韦海南,张金燕,龙光强,等.不同钾水平对二年生三七生长特征及皂苷含量的影响[J].云南农业大学学报(自然科学), 2019, 34(4):695-704.
- [59] Son Y J, Park J E, Lee N, et al. Copper-or zinc-fortified nutrient solution in vertical farming system enriches copper or zinc and elevates phenolic acid and flavonoid contents in Artemisia annua L[J]. Agronomy, 2024, 14(1):135.
- [60] Nomani L, Zehra A, Choudhary S, et al. Exogenous hydrogen sulphide alleviates copper stress impacts in Artemisia annua L. Growth, antioxidant metabolism, glandular trichome development and artemisinin biosynthesis[J]. Plant Biology, 2022, 24(4):642-651.
- [61] Zehra A, Choudhary S, Wani K I, et al. Exogenous abscisic acid mediates ROS homeostasis and maintains glandular trichome to enhance artemisinin biosynthesis in Artemisia annua under copper toxicity[J]. Plant Physiology and Biochemistry, 2020, 156:125-134.
- [62] Zehra A, Wani K I, Choudhary S, et al. Involvement of abscisic acid in silicon-mediated enhancement of copper stress tolerance in Artemisia annua[J]. Plant Physiology and Biochemistry, 2023, 195:37-46.
- [63]周良云,岳红,康传志,等.不同浓度镉对黄花蒿生物量、青蒿素的含量及相关酶基因表达的影响[J].中华中医药杂志, 2016, 31(5):1 887-1 892.
- [64] Li Q, Jiang N, Mei X Y, et al. Effects of lime and oxalic acid on antioxidant enzymes and active components of Panax notoginseng under cadmium stress[J]. Scientific Reports,2022, 12(1):11 410.
- [65] Zu Y, Mei X, Li B, et al. Effects of calcium application on the yields of flavonoids and saponins in Panax notoginseng under cadmium stress[J]. International Journal of Environmental Analytical Chemistry, 2020, 102(16):4 208-4 219.
- [66] Golubkina N, Logvinenko L, Konovalov D, et al. Foliar application of selenium under nano silicon on Artemisia annua:Effects on yield, antioxidant status, essential oil, artemisinin content and mineral composition[J]. Horticulturae,2022, 8(7):597.
- [67]杨浩娜,周成言,邬腊梅,等.植物化感物质的作用机理研究进展[J].湖南农业科学, 2022(3):108-112.
- [68]施梦馨,刘莹,官会林,等.药用植物化感自毒作用及消减措施[J].中国现代中药, 2023, 25(9):2 013-2 019.
- [69]顾艳,梅瑜,徐世强,等.药用植物连作障碍研究进展[J].广东农业科学, 2021, 48(12):162-173.
- [70] Yang M, Zhang X D, Xu Y G, et al. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng[J]. PLoS One, 2015, 10(2):e0118555.
- [71] Zhao Y M, Cheng Y X, Ma Y N, et al. Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease[J].Molecules, 2018, 23(4):819.
- [72]孙雪婷,龙光强,张广辉,等.基于三七连作障碍的土壤理化性状及酶活性研究[J].生态环境学报, 2015, 24(3):409-417.
- [73] Wink M. Plant secondary metabolites modulate insect behavior-steps toward addiction?[J]. Frontiers in Physiology,2018, 9:364.
- [74]沈炜,曹梦娇,王霞.八角茴香提取液对褐飞虱驱避、触杀、熏蒸活性分析[J].浙江农业科学, 2024, 65(4):962-966.
- [75] Kang M S, Lee H S. Acaricidal and insecticidal responses of Cinnamomum Cassia oils and main constituents[J]. Applied Biological Chemistry, 2018, 61(6):653-659.
- [76] Vineesh P J, Mathew A, Kavyamol P M, et al. Essential oils of cinnamon, turmeric and neem as potential control agents against home-invading acid flies(Paederus fuscipes)and darkling beetles(Luprops tristis)[J]. Journal of King Saud University-Science, 2023, 35(1):102 363.
- [77] Al-Khayri J M, Rashmi R, Toppo V, et al. Plant secondary metabolites:The weapons for biotic stress management[J].Metabolites, 2023, 13(6):716.
- [78] Chen T T, Li Y P, Xie L H, et al. AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance to Pseudomonas syringae in Artemisia annua[J]. Horticulture Research, 2021, 8(1):217.
- [79] Hei J Y, Wang S, He X H. Effects of exogenous organic acids on the growth, edaphic factors, soil extracellular enzymes, and microbiomes predict continuous cropping obstacles of Panax notoginseng from the forest understorey[J].Plant and Soil, 2024, 503(1):105-122.
- [80] Zhang Y J, Li T Y, Ye C, et al. Leaching alleviates phenol-mediated root rot in Panax notoginseng by modifying the soil microbiota[J]. Plant and Soil, 2021, 468(1):491-507.
- [81]张小波,郭兰萍,邱智东,等.中国黄花蒿中青蒿素含量空间分布特征分析[J].中国中药杂志, 2017, 42(22):4 277-4 281.